СТРУКТУРА, ОРГАНИЗАЦИЯ И ОСНОВНИ ФУНКЦИИ ЕУКАРИОТНАТА
Клетката е структурна и функционална единица на всички живи организми и понякога е наричана „най–малката единица на живот“.[1] Тя може да се самообновява, саморегулира и самовъзпроизвежда. Някои организми като бактериите са едноклетъчни (съставени само от една клетка). Други организми като човека са многоклетъчни. Човекът има приблизително 100 трилиона (1014) клетки, като нормалната големина на една клетка е 10 µm, а масата ѝ е около 1 ng. Най-голямата клетка е тази на неоплоденото щраусово яйце.[2]
Всяка форма на живот се основава на клетки. Човешкото тяло се състои от приблизително 100 000 милиарда клетки, разпределени в около 200 категории. Има клетки с различни форми и размери, всяка от които изпълнява своя специфична задача. Клетките растат, размножават се и накрая умират. Те са като микроскопични химически лаборатории, в които хранителните вещества и енергията се използват, за да образуват мускули, нерви, кожа, хрущяли и кости. Основната структура е една и съща – външна мембрана, която регулира преминаването през желатинообразно вещество, наречено цитоплазма.
Ядрото е центърът за управление на клетката. Съдържа дезоксирибонуклеинова киселина (ДНК), която определя наследствените характеристики. Ядрена мембрана обгръща и предпазва ДНК. Във вътрешността на ядрото се намира ядърцето, съдържащо рибозоми, които изграждат протеините.
През 1665 година Робърт Хук пръв използва понятието клетка, докато наблюдава коркови клетки.[3] За пръв път клетъчната теория е формулирана през 1839 година от Матиас Шлайден и Теодор Шван. Тя твърди, че всички организми се състоят от една или повече клетки, всички клетки идват от предшестващи ги клетки, жизнените функции на организма протичат в клетките и всички клетки притежават наследствена информация, нужна за регулация на клетъчните функции и за предаване на тази информация на следващите поколения клетки.[4]
ядро
ендоплазмен ретикулум
комплекс на Голджи
митохондрии
рибозоми
гранули
вакуоли
лизозоми
клетъчна мембрана
Накратко, ето от всички най-важните 3 структури:
клетъчна мембрана – това е клетъчна структура, която изолира клетката от околната среда (съседна клетка, външна среда и т.н.). Притежава свойството избирателната пропускливост като по този начин регулира навлизането или излизането на молекули от клетката.
ядро – това е клетъчна структура, отделена от цитозола с ядрена обвивка. Съдържа наследствената информация (наследствената програма на клетката) записана в молекулите на ДНК включени в хромозомите.
цитоплазма – това е клетъчна структура, клетъчно съдържимо, разположено между клетъчната и ядрената мембрана. Цитоплазмата се състои от цитозол, органелите (някои описани по горе, като апарат на Голджи, митохондриите и др.) и включения.
Цитоплазмата представлява около 80% от обема на клетката и съдържа вода, соли, органични молекули и ензими, които са нужни на клетката за катализиране на реакции. Основното вещество на цитоплазмата е цитозолът. Цитозолът е полупрозрачна течност, която заобикаля останалите цитоплазмени компоненти.
Органелите могат да се възприемат като метаболитни механизми или още като самостоятелни малки органи. Има още клетъчни включения, представляващи химически субстанции от запасни хранителни вещества, секреторни продукти и пигментни гранули.[1]
Цитоскелетът представлява „скелето“, което поддържа формата на клетката. Съставен е участва и в клетъчните движения и в разместването на органелите в самата клетка.[2]
Клетъчното ядро – информационният център на клетката
Клетъчно ядро. Ясно се вижда ядърцето изместено в десния край на ядрото.
Клетъчното ядро е най-забележителният органел, открит в еукариотната клетка. В него са поместени клетъчните хромозоми, освен това е мястото, където се реплицира ДНК и се синтензира РНК. Ядрото е сферично по форма и е ограничено от цитоплазмата с двойна ядрена обвивка. Тя изолира и предпазва клетъчната ДНК от различни молекули, които биха могли случайно да повредят структурата ѝ или да я преработят. По време на процесинга ДНК е транскрибирана или копирана върху специално РНК, наречено иРНК. След това иРНК-то се изнася от ядрото и по-късно се превежда в специфична последователност от аминокиселини, изграждащи дадения белтък. Този процес се извършва в цитоплазмата.
Митохондрии и хлоропласти – енергийните централи на клетката
Снимка на митохондрии, направена с трансмисионен електронен микроскоп.
Митохондриите са самовъзпроизвеждащи се органели, които се намират в различен брой, форми и размери в цитоплазмата на еукариотните клетки. Тези органели притежават собствен геном, различен от този в ядрото.[8] Митохондриите са органели с много важна роля, а именно генериране на енергия в еукариотната клетка при процеса дишане, прибавяйки кислород към храната (разграждане на глюкозата и превръщането ѝ в енергия на макроенергийните връзки на АТФ). Това става в цикъла на Кребс.[9]
Пластидите са органели, които съдържат различни видове багрила. Едни от най-широко разпространените пластиди са хлоропластите, в които се съдържа зеленото багрило хлорофил. Хлоропластите са характерни само за растителните клетки и в тях се осъществява фотосинтезата. Пластидите (подобно на митохондриите) съдържат собствен генетичен материал.
Апарат на Голджи и ендоплазматичен ретикулум – разпределители на макромолекулите
Електронномикроскопска снимка на апарата на Голджи в човешки левкоцит
Ендоплазменият ретикулум (ЕР) е транспортна мрежа за молекули, разпределени за определена модификация със специфично предназначение, които плават свободно из цитоплазмата. Този органел има два участъка: Зърнест ендоплазмен ретикулум (наречен така поради наличието на рибозоми по повърхността му) и Гладък ендоплазмен ретикулум. В цистерните на апарата на Голджи се извършват определени модификация (гликолизиране, ацетилиране и др.) на различни молекули.
Рибозоми (центрове за продукция на белтъци)
В рибозомите се извършва разчитането на генетичния код и синтезирането на нови белтъчни молекули, необходими на клетката. В прокариотите рибозомите се срещат свободно в цитоплазмата, докато в еукариотите освен свободни, могат да са и по повърхността на някои от едномембранните органели или локализирани във вътрешността на двумембранните органели.[10]
Лизозоми и пероксизоми (само в еукариотни клетки)
Клетката не би могла да съдържа толкова разрушителни ензими, ако не бяха ограничени с мембрани. Тези ензими са поместени в лизозомите (съдържат ензимите хидролази) и пероксизомите (съдържат предимно оксидази). Понякога тези два органела са наричани „сомоубийствени сакове“ тъй като могат да се „детонират“ и да разрушат клетката (автолизис).
Центрозома (цитоскелетният организатор)
Центрозомата продуцира микротубулите в клетката, които са ключов компонент на цитоскелета. Те ръководят транспорта на везикули от ендоплазмения ретикулум и апарата на Голджи. Центрозомата организира и двете центриоли, които помагат при клетъчното делене, и помагат при формирането на делителното вретено. Центрозомата се среща в животинските клетки и в някои гъби и водорасли.
Везикули
Везикулите пренасят хранителни вещества и непотребни отпадъци, предназначени за изхвърляне от клетката. Описвани са като изпълнени с течност мехурчета, заградени от мембрана. Някои организми (като амебата например) притежават свивателни вакуоли, които могат да изхвърлят вода от клетката, ако е в прекомерно съдържание.
Клетъчен растеж и метаболизъм
Между последователните клетъчни деления клетките нарастват с функционирането на клетъчния метаболизъм. Клетъчния метаболизъм е процес, при който индивидуалните клетки обработват хранителни молекули. Метаболизмът има два ралични пътя: катаболизъм, през който клетките разрушават комплекси от молекули, за да извличат енергия, и анаболизъм, през който клетките използват енергия, за да построяват комплекси от молекули или да изпълняват други функции. Комплексите от захари, приети от организма, могат да се разградят до по-малка комплексна молекула, наречена глюкоза. Оттам в клетката глюкозата се разгражда за производството на АТФ (по-точно производство на неговите макроенергийни връзки, складиращи голямо количество енергия) по два различни начина.
Първият път е гликолизата, неизискваща кислород, отнасяща се към анаеробен анаболизъм. В прокариотите гликолизата е единственият път за производство на енергия.
Втория път се нарича цикъл на Кребс или цикъл на лимонената киселина, извършващ се в митохондриите. В този цикъл се генерира енергия, която е достатъчна за изпълнение на клетъчните функции.
Производство на нови клетки
Клетъчното делене включва една клетка (наречена майчина клетка), която се дели на две нови клетки (наречени дъщерни). Това води до нарастване на многоклетъчния организъм (нарастване на тъканта) и до увеличаване на броя на индивидите при едноклетъчните.
Прокариотите се делят чрез бинарно делене. Еукариотите обикновено претърпяват процес на ядрено делене, наречен митоза, последвано от делене на цитоплазмата, наречено цитокинеза. Диплоидната клетка може да претърпи мейоза, за да редуцира набора си до хаплоиден. В резултат на това делене се получават четири дъщерни клетки. Хаплоидните клетки служат като гамети в многоклетъчните организми и при сливането си образуват диплоидни клетки.
ДНК репликацията или процесът на копиране на клетъчния геном, е необходима всеки път, когато клетката встъпва в делене. Репликацията, както всички останали клетъчни дейности, изисква специални белтъци, които да помогнат за извършването ѝ̀.
Синтез на белтъци
Клетките могат да синтензират нови белтъци, които са важни за поддържането на клетъчната активност. Процесът включва образуването на нови белтъчни молекули от аминокиселини, подредени по информацията, кодирана в ДНК/РНК. Синтезът на белтъци се основава на две основни стъпки: транскрипция и транслация.
Транскрипцията е процесът, при който информация от ДНК се използва за производството на комплементарната ѝ РНК нишка. Тази РНК е информационното РНК (иРНК), което може свободно да мигрира в клетката. иРНК се свързва в РНК белтъчни комплекси, наречени рибозоми, локализирани в цитозола, където се превежда в полипептидна последователност.
Произход и еволюция
Произходът на клетката е в основата на произхода на живота, това е една от най-важните стъпки в еволюцията на организмите. Появата на клетката бележи прехода от пребиотична химия към биологичен живот.
Съществуват три основни хипотези за произхода на молекулите, поставили началото на живота на Земята. Според едната от тях те са пренесени от метеорити, според втората се образуват в горещи извори на морското дъно, а според третата са синтезирани от мълнии в атмосферата (вижте експеримент на Милер-Юри). На практика не съществуват експериментални данни, които да показват какви са първите самовъзпроизвеждащи се форми. Обикновено се приема, че РНК е първата самовъзпроизвеждаща се молекула, тъй като тя има възможност както да съхранява генетична информация, така и да катализира химични реакции. В същото време е възможно преди РНК да са съществували други вещества с възможност за самовъзпроизвеждане, като например пептидно-нуклеиновата киселина.[11]
Първите клетки се появяват преди поне 3,0 – 3,3 милиарда години, като се предполага, че те са хетеротрофи. Важно свойство на клетките е наличието на клетъчна мембрана, съставена от двоен слой липиди. Вероятно ранните клетъчни мембрани са по-прости и проницаеми от съвременните, със само по една верига на мастни киселини в липидите. Липидите спонтанно образуват двуслойни везикули във водата и може би са се появили преди РНК. Но първите клетъчни мембрани може би са се образували и от каталитична РНК или дори са имали нужда от наличието на структурни белтъци.[12]
Еукариотните клетки вероятно са еволюирали от симбиозни общности от прокариотни клетки. Почти е сигурно, че органелите, свързани с ДНК, като митохондриите и хлоропластите, са съответно остатъци от древни симбиозни кислороднодишащи протеобактерии и цианобактерии, а останалата част от клетката произлиза от прародителска, архайска прокариотна клетка – теория, наречена ендосимбионтна.
Клетка от меристемната тъкан – от нея се развиват всички останали специализирани видове клетки
Клетка от склеренхимната тъкан – притежава с пъти по-дебели стени, служи за укрепване; обикновено тези клетки са мъртви
Клетка от хлоренхимната тъкан – слабо диференцирана; съдържа много хлоропласти, тъй като там се извършва фотосинтезата
Клетка от аеренхимната тъкан – характерни са за множество междуклетъчни пространства – функцията ѝ е обменът на газове
Клетка от епидермиса – най-често не съдържа хлоропласти; може да има рецептори за светлина и дразнения
Клетка от проводящата тъкан – функцията ѝ е транспортът на продуктите от фотосинезата; не притежава ядро
Животински
Невронни клетки – 30 – 50 mm
Мускулни влакна – 10 – 12 mm
Яйцеклетка – 200 µm
Сперматозоиди – 3 – 4 µm
Вижте и видео лекция по устройство на клетката тук :